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Abstract

In solving Partial Di�erential Equations, such as the Barotropic equations in ocean models,

on Distributed Memory Computers, �nite di�erence methods are commonly used. Most often,

processor subdomain boundaries must be updated at each time step. This boundary update

process involves many messages of small sizes, therefore large communication overhead. Here

we propose a new approach which expands the ghost cell layers and thus updates boundaries

much less frequently | reducing total message volume and groupping small messages into bigger

ones. Together with a technique for eliminating diagonal communications, the method speedup

communication substantially, upto 170%. We explain the method and implementation in details,

provide systematic timing results and performance analysis on Cray T3E and IBM SP.
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1 Introduction

As processor clock speeds double every 18 months (Moore's Law) and reach or surpass 1 Giga Hertz,

the large gap between CPU processing speed and memory access rate and inter-node communication

rate is becoming even bigger.

To bridge this gap, both e�orts in system architecture design and user application are required.

In memory access, for example, large multi-level (level 3) and multi-way (128-way) set associative

caches are appearing in latest processors. In communication inter-connect, fast high bandwidth

switches are also emerging. On applications side, blocking data into small segments to �t processor

cache structure seems to be a promising approach to reduce memory access time [4].

Reducing communication time often involves algorithmic changes. A common and easily im-

plemented approach is to change algorithms such that small messages are grouped into one big

message, thus achieves higher communication bandwidth and lower communication latency. An-

other useful technique for multiple messages to/from multiple processors is to use asynchronous

send/receive and post receives with appropriate memory bu�ers ahead of time.

Yet with the large and growing gap between processing speed and communication speed, more

methods need to be developed to reduce communications. Here we concentrate on solving partial

di�erential equations (PDE) problems on regular domains using �nite di�erence method, a popular

method adopted in many applications.

On a distributed system, each processor holds a subset of the problem domain, referred to as

problem subdomains. Each processor subdomain contains one or several boundary layers, which
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are usually called ghost cells. Ghost cells contain most recent values of the corresponding active

cells on neighboring processors. They must be updated at every time step. This is achieved by

pair-wise inter-processor communication, exchanging the most recent values of ghost cells.

The number of ghost cells layers are usually determined by the order of the accuracy of the

numerical discretization method. For stencils of second order accuracy for elliptic equations only

one layer is required. But in many applications, such as in climate modeling, third or fourth order

is commonly used. Such an example is the barotropic equations in ocean models. In these cases,

two layers of ghost cells are needed. There are applications that use even higher order accuracy

and more layers of ghost cells.

In the most common approach, subdomain boundaries (ghost cells) are updated in every time

step. It is straight forward, easily implemented and scales to large number of processors reasonably

well. However, so far no study has been done that addresses the problem of substantial communi-

cation time due to the large amount of small messages to be exchanged between processors.

To speed up the communication, one idea is to combine messages for di�erent timesteps and

exchange the bigger combined message but less frequently. In this way, the communication latency

could be reduced and the communication bandwidth is increased since the message sizes are bigger.

In the following, we examine the feasibility of this idea and give an in-depth analysis of the method.

1.1 Ghost Cell Expansion (GCE) Method

We propose to expand the layers of ghost cells so that they can be updated much less frequently,

and small messages can be combined into bigger messages. A further important advantage is that

the total message volume is in fact reduced.

Consider the case of 2 layers of ghost cells. If we expand ghost cells to 2+4=6 layers, we

only need to update ghost cells once every 5 time steps, with a total of 6 layers being exchanged.

Without ghost cell expansion, we must update the 2 ghost cell layers every time step, results in

total of 10 layers of ghost cells being exchanged in 5 time steps. The net message volume reduction

is about (10-6)/10 = 40%, not including the reduced communication latency.

We denote the number of additional ghost cell layers as expansion level e. The following pseudo

code outlines the algorithm. Here (nx, ny) is the owner subdomain size, L is the number of ghost

cell layers required for the speci�c PDE problem. The �eld is declared as field(1-L-e:nx+L+e,

1-L-e:ny+L+e).

do istep = 1, total_steps

j = mod(istep-1,e+1)

if (j==0) update ghost_cells

y_start = 1 -e + j

y_end = ny + e - j

x_start = 1 -e + j

x_end = nx + e - j

if subdomain touches real boundaries, set appropriate

y_start, y_end, x_start, x_end to 1 or nx or ny

do ix = x_start, x_end

do iy = y_start, y_end

update field(ix, iy)

enddo
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enddo

enddo

One can easily see that this will produce identical results for di�erent expansion level e, because the

active domain is reduced successively and and the �eld values are always updated using the most

recent L layer ghost cells. Note messages are exchanged every e+1 time steps instead of every step,

we substantially reduce the communication overhead. The disadvantage is the increased memory

and computation cost.

1.2 Eliminating Communications with Diagonal Processors

For inter-processor communications with relatively small-size messages, the number of message is

of primary concern. For regular grids, there are 8 neighboring processors in 2D and 26 neighboring

processors in 3D (see Figure 1). Although not all �nite di�erence operators (stencils) in PDE

require all the neighboring points, some of them, especially in climate model (primitive equations),

do require most neighboring points. Furthermore, in ghost cell expansions, those corner points

needs to be updated to keep the results correct and consistent. Thus we consider the full neighbor

case.

It is clear that if a given processor directly exchanges ghost cells with all its neighbors, there

must be 8 messages in 2D and 26 messages in 3D. This standard approach is implemented in some

applications.

Here we describe a diagonal communication elimination technique (�rst implemented in [2] in

a slightly di�erent form) that reduces the number of messages to the minimum. In 2D, the total

messages are reduced from 8 to 4, and in 3D, total messages are reduced from 26 to 6. In essence,

this technique requires only communications with nearest neighbors.

For simplicity, consider a 2D data array using a 2D domain decomposition (Figure 1). The

key idea in diagonal communication elimination technique is to let the diagonal blocks go with the

main ghost cell blocks. Consider left and right communication step in Figure 1. In this step, we

send to the right processor corner blocks 5 and 7 together with the main block 3. The processor

receives similar blocks from right processor as well. Another similar exchanges with left processor

deals with blocks 6, 8 and 4. After these two right/left exchanges, the processor covering block 1

has also diagonal blocks 5 and 6. The processor covering block 2 has also diagonal blocks 7 and 8.

Now in the next two up/down exchanges, each processor exchanges blocks 1, 5 and 6 with

its down neighbor, and exchanges blocks 2, 7 and 8 with its upper neighbor. After these two

exchanges all 8 ghost cell blocks are in exactly the correct ghost cell bu�ers. Therefore, we need

only 4 exchange communications, instead of 8 exchanges. This technique is easily generalized to

3D, where only 6 exchanges are required to communicate 26 ghost cell blocks with 26 neighbors.

To be clear, in this technique the corner blocks are moved twice to reach their �nal destinations

in 2D, and the cubic diagonal blocks are move 3 times to reach their �nal destinations. Since

corner blocks are far smaller than the main blocks, they do not a�ect the communication time.

However, the substantial reduction in total number of messages reduces the communication latency

signi�cantly, and also reduces programming complexity and traÆc congestions due to much more

messages in the communication network.
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Figure 1: Illustration of ghost cells in 2D. Shaded area is active region (subdomain). 4 ghost

cells blocks (1,2,3,4) are from immediate neighbors ( horizontal and vertical neighbors). Another

4 ghost cells corner blocks (5,6,7,8) are from 2nd nearest neighbors (diagonal processors). In 3D,

there will be 6 ghost cells blocks from immediate neighbor processors, 12 planar corner blocks from

2nd nearest neighbor processors, and 8 cubic corner blocks from 3rd nearest neighbor processors.

2 Analysis of GCE Method

2.1 Message Volume

For a 2D domain decomposition, the amount of total message volume (ghost cells) for each update

for the conventional method is:

V old = (nx + 2L) � (ny + 2L)� nx � ny = 2L � (nx + ny + 2L) (1)

Message volume for each time step in ghost cell expansion method is:

V new(e) = (2L+ 2e) � (nx + ny + 2L+ 2e)=(e+ 1): (2)

Here we update ghost cells once every e+1 time steps, therefore, we divide the volume of each

update by e+1 to get volume per time step.

The ratio of total message volumes for a 2D decomposition is:

V new

V old
=

(2L+ 2e) � (nx + ny + 2L+ 2e)

2L � (nx + ny + 2L) � (e+ 1)
'

L+ e

L(e+ 1)
(3)

We have nx + ny � L + e in most cases. For L = 2, and e = 4, this ratio is 3/5. Thus by using

ghost cells layers expansion, we not only reduce the message exchange frequency, but also decrease

the total message volume.

2.2 Communication Time

To analyze the communication time Tcomm, we assume it can be approximated by a simple \(message-

volume)/bandwidth + latency" model.
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For a 2D domain decomposition, the communication time for updating the ghost cells in each

timestep for the conventional method is:

T old
comm(2D) =

2L(nx + ny + 2L)8

B
+ 4TL (4)

where B is the bandwidth and TL is the communication latency.

When ghost cells are expanded e layers, the ghost cell update is done once every e+1 time steps)

for the new method. Thus the average communication time per timestep is:

Tnew
comm(2D) = (

(2L+ 2e)(nx + ny + 2L+ 2e)8

B
+ 4TL)=(e+ 1): (5)

For large messages, we have measured B; TL [3]: For Cray T3E,

B = 300MB=sec; TL = 17�sec;

and for IBM SP,

B = 133MB=sec; TL = 26�sec:

Using nx = 800; ny = 800 as an example, we calculate the ratio of communication time for the new

method and the old method as the function of required level L and expansion level e for 2D domain

decomposition. as shown in Figure 2. We see that the speedup increases when L increases. And

the speedup increases �rst while e increases up to 8. When L = 2, the maximum speedup could

be more than two-fold. Due to di�erent bandwidth and latency on two machines, the speedup on

T3E is slightly larger than on SP.
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Figure 2: Communication speedup as the function of the ghost cells layers required level L and

expansion level e for a 2D domain decomposition. Here nx = ny = 800.

2.3 Memory Usage and Computational Cost

The new method has the disadvantage of using slightly more memory and computation than the

conventional method.
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The extra memory used in the new method for each subdomain is

�M = (nx + 2L+ 2e)(ny + 2L+ 2e)� (nx + 2L)(ny + 2L)

= (nx + ny + 4L)2e+ 4e2 (6)

Comparing to the total memory usage for the conventional method,

M = (nx + 2L)(ny + 2L), this is a rather small amount:

�M=M ' 2e=nx + 2e=ny (7)

We have nx; ny � L; e. For e = 4 and nx = ny = 800, this ratio is 2%.

The new method shrinks the local computational region by the size of 1 at both dimensions every

time step, so the total computational cost for each time step (here divide by e+1 since boundary

update is done every e+1 time steps) is:

�C =
eX

k=1

[(nx + k)(ny + k)� nxny ]=(e+ 1) = (nx + ny)e=2 + e(2e+ 1)=6

Comparing to the computational cost in the conventional method for each time step, C = nxny ,

this is a rather small fraction:

�C=C ' e=(2nx) + e=(2ny) (8)

For e = 4 and nx = ny = 800, this ratio is 0.5%.

2.4 1D and 3D domain decompositions

The above analysis gives the number of messages, message volume, communication, memory usage

and computational cost for solving a 2D PDE problem with 2D domain decomposition. It should

be noted that Eqs.(3, 7, 8) remain identical for 3D problems using 2D domain decomposition.

For 3D problems, one may use 3D domain decomposition, as well as 2D and 1D domain decom-

positions. In all these cases, the GCE method can be bene�cially employed.

Consider the number of messages in each ghost cell update. In 1D decomposition, there are

two messages exchanged with up or down processors. In 3D decomposition, using the diagonal

communication elimination technique, only a total of 6 messages are exchanged with its neighbors.

Next, consider the communication volume and time. In 1D decomposition, the communication

time spent on ghost cell update for the 3D array are

T old
comm(1D) =

2Lnxnz � 8

B
+ 2TL (9)

Tnew
comm(1D) = (

(2L+ 2e)nxnz � 8

B
+ 2TL)=(e+ 1): (10)

In 3D decomposition, the communication time spent on ghost cell update for the 3D array are

T old
comm(3D) =

2L(nxny + nxnz + nynz) � 8

B
+ 6TL; (11)

Tnew
comm(3D) = (

(2L+ 2e)(nxny + nxnz + nynz) � 8

B
+ 6TL)=(e+ 1): (12)

For all cases, the ratio of communication volume remains identical as Eq.(3).
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Decomposition �M=M �C=C

1D 2e=nx e=2nx
2D 2e=nx + 2e=ny e=2nx + e=2ny
3D 2e=nx + 2e=ny + 2e=nz e=2nx + e=2ny + e=2nz

Table 1: Overhead in memory usage (�M=M) and in computational cost (�C=C) for GCE method

expressed as a ratio in 1D, 2D and 3D decompositions.

The overhead due to GCE method in memory usage and computational time can be calculate

following same procedures leading to Eqs.(7,8). They are summarized in Table 1. In all practical

cases, they remain very small.

In general when solving PDE problems involving 3D �elds, 3D domain decomposition is best

because it has the least total amount communication volume in updating ghost cells. However,

many other considerations are sometimes more important than consideration of communications.

For example, the vertical direction is very special in atmosphere or ocean modeling , where paral-

lelization along vertical direction is either undesirable or simply too complicated. In these cases,

typically a 2D or even 1D domain decomposition is adopted for the 3D �elds, and vertical direction

are entirely local to a processor. Remapping to other decompositions[3] are often necessary to

facilitate other tasks such as spectral transform in atmospheric models, polar �ltering and parallel

I/O.

2.5 Implementation

The key to implement GCE method is to support variable layers of ghost cells and update them

eÆciently. The diagonal communication elimination technique described earlier is critical for ef-

�ciency. In addition, due to array indexing, some data packing and unpacking are necessary. In

these procedures, moving a block of data, rather than moving one array element at a time, will

increase speed. A number of existing software supports variable ghost cell layers [1, 5, 6].

3 Test problem

Although the original motivation for this work is on atmosphere and ocean models, we test the

ghost cell expansion method on a simpler 2D static heat distribution problem, to clearly illustrate

some performance issues.

The 2D problem is governed by the Laplacian equation,

@2u

@2x
+
@2u

@2y
= 0 (13)

on a rectangular region with Dirichlet boundary conditions. After discretization on a regular grid,

the problem is solved by a �nite di�erence method. In 2nd order accuracy, we perform Gauss-Seidel

iterations using 5-point stencils

u(x; y) =
1

4
[u(x� 1; y) + u(x+ 1; y) + u(x; y � 1) + u(x; y + 1)]: (14)
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This stencil requires one layer of ghost cells (L=1). In 4th order accuracy, we use 9-point stencils

u(x; y) =
1

60
[16u(x� 1; y) + 16u(x+ 1; y) + 16u(x; y � 1) + 16u(x; y+ 1)

� u(x� 2; y)� u(x+ 2; y) � u(x; y + 2)� u(x; y� 2)] (15)

This stencil requires two layers of ghost cells (L=2). The iteration stop either when a convergence

tolerance is rearched or maximum numbers of iteration steps is reached.

The tests are performed on both CRAY T3E and IBM SP at NERSC. Four tests with the

following parameters are studied:

� Test 1: Global size 3200� 3200, P = 16, L=1.

� Test 2: Global size 3200� 3200, P = 16, L=2.

� Test 3: Global size 6400� 6400, P = 64, L=1.

� Test 4: Global size 6400� 6400, P = 64, L=2.

where P is the total number of processors. Note that using 2D decomposition, all four tests have

the same local domain size of 800� 800. We performed a total of 512 Gauss-Seidel iterations.

4 Performance Analysis

In Figure 3, calculation time (a), communication time (b), and total time (c) at di�erent ghost cell

expansion levels (e) are shown on the left for the four test on IBM SP. One can see that calculation

times remain very much the same, con�rming the analysis in section 2. Note that since the local

domain size is 800�800 in all tests, calculation time for Tests 1 and 3 should be same, as con�rmed

in Figure 1(a). Similarly, curves for Tests 2 and 4 coincide too.

As expansion level increases, the communication times steadily decrease, leading to fairly large

(upto a factor of 2.8) communication speedup. The total time of communication and calculation

also decrease steadily. The speedup of total solution time increases by 25% at e = 8.

In Figure 4, timing results on Cray T3E are shown. They are similar to that in SP. Again

calculation times remain almost same, while the communication times speedup by 170%. On T3E,

however, the total problem speedup is only about 3%. This is because the communication on T3E

is much faster, so the communication time is only about 3% of the total computational time. Even

though this small proportion is speedup by 270%, the total time does not drop very much.

On communication time reduction or speedup, two layer ghost cell (L=2) cases always have

higher speedup, than those with one-layer (L=1) cases. The speedups are comparable to those

theoretical estimation in Figure 2. The di�erences are: tests with P=16 has the smaller communi-

cation speedup than those with P=64 on SP, while they are very close on T3E. This is due to the

optimal message bandwidth was not reached on SP for a small size problem.

Comparison of T3E timing with and SP timing shows some interesting points. For these stencils

type �nite di�erence computations, T3E (450 MHz Alpha EV5, peak 900MFLOP/s) achieves a

higher computational speed than SP (200 MHz Winterhawk, peak 800MFLOP/s) does on per

processor basis. For the 9-stencil calculations, T3E obtained 121.4 MFLOP/s while SP obtained

73.2 MFLOP/s per processor.

On communication, T3E is far more faster than SP: T3E requires 0.65 sec while SP requires

7.5 sec for L=2 case on 64 processors. This is factor of 12 di�erence. Although on the measured

point-to-point message latency and bandwidth [see Eqs.(6,7)], SP is only factor of 2 slower than
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Figure 3: (a) calculation time and slowdown, (b) communication time and speedup, (c) total time

and speedup for these four tests on IBM SP.

9



0 2 4 6 8
10

15

20

25

30

35

40

Expansion Level

C
al

cu
la

tio
n 

Ti
m

e 
(s

ec
)

CRAY T3E

∇∇∇  L=2, 64PE

oooo  L=2, 16PE

*****  L=1, 64PE

xxxx   L=1, 16PE

(a)

0 2 4 6 8
0.2

0.4

0.6

0.8

1

1.2

Expansion Level

C
al

cu
la

tio
n 

S
lo

w
do

w
n

CRAY T3E

∇∇∇  L=2, 64PE

oooo  L=2, 16PE

*****  L=1, 64PE

xxxx   L=1, 16PE

0 2 4 6 8
0

0.5

1

1.5

2

Expansion Level

C
om

m
un

ic
at

io
n 

Ti
m

e 
(s

ec
)

CRAY T3E

∇∇∇  L=2, 64PE

*****  L=1, 64PE

oooo  L=2, 16PE

xxxx   L=1, 16PE

(b)

0 2 4 6 8
1

1.5

2

2.5

3

Expansion Level

C
om

m
un

ic
at

io
n 

S
pe

ed
up

CRAY T3E

∇∇∇  L=2, 64PE

*****  L=1, 64PE

oooo  L=2, 16PE

xxxx   L=1, 16PE

0 2 4 6 8
10

15

20

25

30

35

40

Expansion Level

To
ta

l T
im

e 
(s

ec
)

CRAY T3E

∇∇∇  L=2, 64PE

oooo  L=2, 16PE

*****  L=1, 64PE

xxxx   L=1, 16PE

(c)

0 2 4 6 8
0.9

0.95

1

1.05

1.1

1.15

1.2

Expansion Level

To
ta

l S
pe

ed
up

CRAY T3E

*****  L=1, 64PE

∇∇∇  L=2, 64PE

oooo  L=2, 16PE

xxxx   L=1, 16PE

Figure 4: (a) calculation time and slowdown, (b) communication time and speedup, (c) total time

and speedup for these four tests on Cray T3E.
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T3E, actual measurements on communications involving more than 2 processors always show SP

much slower than T3E [3]. This indicates a very signi�cant communication traÆc congestion in

the SP interconnect, possibly due to the adaptor between the node and switch.

Scaling from smaller processors (16) to larger processors (64), communication time Tcomm always

increases in both T3E and SP. Tcomm increases about 40% on T3E (Figure 4), and is almost doubled

on SP (Figure 3). This is another signal that SP communication has some congestion.
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